2. V. G. Litvinov, Motion of a Nonlinearly Viscous Fluid [in Russian], Nauka, Moscow (1982).
3. V. I. Yudovich, "Two dimensional nonstationary problem of ideal incompressible fluid flow through a given domain," Mat. Sb., 64, No. 4, 562-588 (1964).
4. K. Cherchin'yani, Mathematical Methods in Kinetic Theory of Gases [Russian translation], Mir, Moscow (1973).
5. S. V. Kovalevskaya, Scientific Work [in Russian], Izd. Akad. Nauk SSSR, Moscow (1948).
6. A. G. Kurosh, A Course in Higher Algebra [in Russian], Fizmatgiz, Moscow (1959).

CONVECTIVE HEATING OF A HALF-SPACE (NONSYMMETRIC CASE)

L. N. Germanovich and I. D. Kill'

UDC 536.2

An exact solution of the heat-conduction problem for a half-space is obtained in a form convenient for calculations for an important case of a nonsymmetric temperature distribution of a medium bounding a half-space.

The solution of the heat-conduction boundary-value problem

$$
\begin{gather*}
\frac{\partial T}{\partial t}=\Delta T(r \geqslant 0,0 \leqslant \varphi<2 \pi, z>0, t>0),\left.T\right|_{t=0}=0 \\
\frac{\partial T}{\partial z}=h\left[T-\exp \left(-\frac{r^{2}}{4 \delta}\right) \sum_{n=0}^{\infty}\left(\vartheta_{n} \cos n \varphi+\tau_{n} \sin n \varphi\right)\right]\left(z=0, \tau_{0}=0\right) \tag{1}
\end{gather*}
$$

written in dimensionless coordinates [1] is sought in the form

$$
\begin{equation*}
T=\sum_{n=0}^{\infty}\left[u_{n}(r, z, t) \cos n \varphi+v_{n}(r, z, t) \sin n \varphi\right] \quad\left(v_{0}(r, z, t)=0\right) \tag{2}
\end{equation*}
$$

Substituting (2) into (1) and following [1], we obtain

$$
\begin{gather*}
u_{n}=\vartheta_{n} \int_{0}^{t} I_{n}(r, \tau) f_{0}(z, \tau) d \tau, \quad v_{n}=\tau_{n} \int_{0}^{t} I_{n}(r, \tau) f_{0}(z, \tau) d \tau \tag{3}\\
I_{n}=2 \int_{0}^{\infty} \lambda e^{-\lambda z(1+\tau)} J_{n}(\lambda r) d \lambda
\end{gather*}
$$

where

$$
\begin{equation*}
f_{0}(z, \tau)=\frac{h}{\sqrt{\pi \tau}} \exp \left(-\frac{z^{2}}{4 \tau}\right)-h^{2} \cdot \exp \left(h^{2} \tau+h z\right) \operatorname{erfc} \frac{z+2 h \tau}{2 \sqrt{\tau}} \tag{4}
\end{equation*}
$$

and $J_{n}(x)$ is the Bessel function. Using the technique of summation over gamma functions $\Gamma(x)$ [2] and the integral representation of Laguerre polynomials $L \mathcal{R}(x)$ [3], we find

$$
\begin{gather*}
I_{n}(r, \tau)=\frac{n}{2}(x y)^{\frac{n}{2}} y e^{-x} \sum_{k=0}^{\infty} \frac{\Gamma\left(\frac{n}{2}+k\right)}{(n+k)!} y^{k} L_{k}^{n}(x), \quad x=\frac{r^{2} y}{4} \\
y=\frac{1}{1+\tau} \tag{5}
\end{gather*}
$$

The case $n=0$ corresponds to the axisymmetric problem (see [1]). For $n=2 p(p=1$, 2 , ...) we use the series for the generating function of the Laguerre polynomials [3]. We obtain

[^0]\[

$$
\begin{equation*}
I_{2 p}=p x^{p} y \sum_{q=0}^{p} \frac{(-1)^{q}}{q!(p-q)!y^{q}}-\int_{1}^{(1-y)^{-1}}(u-1)^{p+q-1} u^{p-q} e^{-x u} d u \tag{6}
\end{equation*}
$$

\]

For $n=2 p+1(p=0,1, \ldots)$, we use the relationship between the Laguerre and Hermite polynomials and the integral representation of the latter. We obtain
$I_{2 p+1}=\frac{(2 p+1)(2 p+1)!}{\sqrt{\pi}(4 p+2)!} 2^{2 p+2} x^{p+\frac{1}{2}} y^{p+\frac{3}{2}} \mathrm{e}^{-x} \int_{-1}^{1}\left(1-v^{2}\right)^{2 p+\frac{1}{2}} \mathrm{e}^{x v^{2}} d v \int_{0}^{\infty} \mathrm{e}^{-u^{2}} \cos (2 u v \sqrt{x})\left[\frac{d^{2 p}}{d \zeta^{2 p}} \mathrm{e}^{5^{2}}\right]_{\delta=u \sqrt{y}} d u$.

Therefore, (3), (4), (6), and (7) permit complete determination of the temperature within the half-space. Questions of convergence are removed if the series in (1) is a finite trigonometric polynomial. Since the integrals with respect to u in (6) and (7) are always taken in elementary functions [4], then the final formulas are sufficiently simple for computations. For instance

$$
\begin{gather*}
u_{1}=r \theta_{1} \int_{0}^{t} f_{0}(z, \tau) \exp \left[-\frac{r^{2}}{4(1+\tau)}\right] \frac{d \tau}{\sqrt{\tau}(1+\tau)^{2}} \int_{0}^{1} \sqrt{1-v^{2}} \exp \left[-\frac{r^{2} v^{2}}{4 \tau(1+\tau)}\right] d v \tag{8}\\
\theta_{1}=h \int_{0}^{t} f_{0}(z, \tau)\left\{\frac{4 \tau}{r^{2}} \exp \left(-\frac{r^{2}}{4 \tau}\right)+\left(\frac{1}{1+\tau}-\frac{4 \tau}{r^{2}}\right) \exp \left[-\frac{r^{2}}{4(1+\tau)}\right]\right\} d \tau \tag{9}
\end{gather*}
$$

LITERATURE CITED

1. L. N. Germanovich and I. D. Kill', "On thermostresses in an elastic half-space," Zh. Prikl. Mekh. Tekh. Fiz., No. 3, 159-164 (1983).
2. A. F. Nikiforov and V. B. Uvarov, Special Functions of Mathematical Physics [in Russian], Nauka, Moscow (1978).
3. H. Bateman and A. Erdelyi, Higher Transcendental Functions [Russian translation], Vol. 2, Nauka, Moscow (1974).
4. A. P. Prudnikov, Yu. A. Brychkov, and 0. I. Marichev, Integrals and Series. Elementary Functions [in Russian], Nauka, Moscow (1981).

[^0]: Moscow Mining Institute. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 48, No. 1, pp. 136-138, January, 1985. Original article submitted July 29, 1983.

